

Decibels!

Decibels!

Decibels!

Decibels!

Objectives

- Introduce the concept and history of decibels (dB).
- Explain their uses and importance in radio communication.
- Cover practical applications, including:
 - Signal strength
 - Power ratios
 - Antenna gain
 - Path budgets
- Explore common "flavours" of decibels:
 - o dBm
 - o dBmv
 - o dBi
 - dBd
 - dBc
 - dBfs
- Provide real-world examples.
 - Introducing: ET's easy mode decibel math!

What is a Decibel?

- A unit to compare two values, such as power or intensity.
- Simplifies working with very large or very small ratios.
- Developed at Bell Labs in the 1920s, named after Alexander Graham Bell.
 - The "Bel" was introduced by engineers at Bell Labs in the 1920s as a logarithmic measure of power loss.
 - * Based on a single-wire, ground-return telephone system's signal loss over 1 mile.
 - The Bel proved too large a unit for practical use, so they adopted the "decibel" (1/10th of a Bel).
 - * Engineers do it in metric. "Deci" means one tenth.

Why Do We Need Decibels?

- Makes large ratios easier to express.
 - To make big and small numbers easier to compare.
- Helps compare signal strength, gain, and losses, all using the same unit.
- Essential for RF work, including antenna theory, radio design, and troubleshooting.

Alexander "Aleck" Graham Bell c. 1917

Decibels: Simplifying Large Ratios

- A logarithm tells you how many times to multiply a number by itself.
 - Example:

 $\log_{10}(100)=2 \quad \text{because} \quad 10\times 10=100$

- Why use logarithms?
 - Example: How many watts of drive does Roy need for his surplus broadcast amplifier to output exactly the legal limit?

Large Ratios in RF Power

• Why Handling Large Ratios Matters:

- RF power spans a huge range, from strong transmit signals to extremely weak received signals.
- Linear scales (e.g., watts) make it difficult to compare values.
- Logarithmic scales (e.g., dBm) simplify the comparison.

Watts Scale

- Legal Limit: 1500 watts
- Weak Signal: 0.000000000001 watts
- Ratio:

• **Difference**: 1.5×10^{17}

dBm Scale

- Legal Limit: 61.671 dBm
- Weak Signal: -120 dBm

• Ratio:

$$\frac{61.671}{-120}$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

• **Difference**: 181.671

Why Use Decibels in RF?

• Simplifies Calculations:

- Gains and losses in RF systems are often multiplicative.
- Decibels turn these into simple addition/subtraction.

• Practical Examples:

- Signal Strength:
 - ★ Received Signal Level (RSL): -120 dBm
 - * Transmit Power: 61.671 dBm

• Antenna Gain:

- ★ Adding gain: +15 dBi
- Cable Loss:
 - ★ Subtracting loss: −3 dB

• Why It's Useful:

- Makes large ranges easier to compare.
- Turns complex multiplications/divisions into simple addition/subtraction.

Why Logarithms for Power?

• Historical Context:

- The Bel was developed at Bell Labs in the 1920s to quantify power loss in telephone lines.
- Early systems used a single-wire ground-return configuration.
- Observation: A power loss over 1 mile was roughly an order of magnitude (10 : 1).

Evolution to Decibels:

- \circ 1 Bel = 10 : 1 ratio = one order of magnitude = 10 dB.
- $\circ~10\cdot\log_{10}$ naturally aligns to orders of magnitude in our ten finger based decimal number system.
- Decibel (dB) became standard for practical use.

Calculating Decibels

→ < Ξ →</p>

- Decibel Formula:
 - Power (dB):

$$P_{\rm dB} = 10 \cdot \log_{10} \left(\frac{P_1}{P_2} \right)$$

• Voltage (dB):

$$V_{\rm dB} = 20 \cdot \log_{10} \left(\frac{V_1}{V_2} \right)$$

• Key Concepts:

- $\circ~$ Power ratios: 10 $\cdot~ \log_{10},$ Because we are working with 1/10th steps of a Bel.
- $\circ~$ Voltage ratios: 20 $\cdot~$ log_{10}, because of its squared relationship to the power.

• Examples:

• Power:

$$10 \cdot \log_{10}(1500) \approx 31.76 \, \mathrm{dB}$$

• Voltage:

 $20 \cdot \log_{10}(10) = 20 \, \mathrm{dB}.$

Decibel Rules of Thumb

• Simple Decibel Rules:

- Doubling power adds $+3 \, dB$
- Halving power subtracts -3 dB
- $10 \times \text{power} = +10 \text{ dB}.$

• Practical Examples:

- $\circ \ 100 \text{ watts} \rightarrow 200 \text{ watts}: +3 \text{ dB}.$
- $\circ \ \ 100 \ watts \rightarrow 50 \ watts: -3 \ dB.$
- $\circ~$ 100 watts \rightarrow 1000 watts : $+10\,dB.$

• Why It Matters:

- Simplifies power calculations in RF systems.
- Saves time during design and troubleshooting.

Understanding Relative dB Units

• What Are Relative dB Units?

- dB is a **relative measurement**: compares two quantities to a reference.
- Examples: Power, voltage, gain, signal strength.
- Common Relative dB Units:
 - **dBm**: Power relative to 1 mW.

$$P_{\rm dBm} = 10 \cdot \log_{10} \left(\frac{P}{1\,\rm mW} \right)$$

- **dBi**: Antenna gain relative to an isotropic radiator.
- **dBd**: Antenna gain relative to a dipole.
- **dBc**: Relative to carrier power (e.g., spurious emissions, sideband noise).
- **dBmV**: Voltage relative to 1 mV.
- **dBFS**: Relative to **full scale**, used in digital systems.
- Why Use Relative dB Units?
 - Simplifies comparisons over large ranges.
 - If we choose the right ones, we can do apples to apples math. For instance, dBm and dBi to get EIRP.

Antenna Gain: Focused Power

• What is Antenna Gain?

- Gain measures how well an antenna focuses energy in a specific direction.
- Relative to:
 - ★ *dBi*: Isotropic radiator.
 - * dBd: Dipole antenna (0 dBd = 2.15 dBi).

• Why It's Important:

- Higher gain improves signal strength by focusing energy.
- Example: Yagi antenna vs. dipole.

• Quick Tips:

- Gain in dBi = Gain in dBd + 2.15
- Antenna salesmen will use dBi because the number is bigger and more inticing.

What is an Isotropic Radiator?

• Definition:

- A **theoretical antenna** that radiates power equally in all directions (a perfect sphere).
- $\circ~$ Serves as a $\ensuremath{\text{reference}}$ for measuring antenna gain in dBi.

• Why Is It Important?

- Provides a standard reference for antenna performance.
- Gain in dBi: Compares how well an antenna focuses energy versus isotropic radiation.

• Characteristics:

- Perfect spherical radiation pattern.
- Impossible to construct physically, but useful for calculations.

Real-World Analogy:

- A **flare in the sky** radiates light uniformly in all directions, similar to an isotropic source.
- A star, like our **sun**.

Dipoles and Monopoles: Directional Radiation and

- Dipoles and Monopoles:
 - **Dipole Antenna:** Two poles radiating energy in a **donut-shaped pattern**.
 - $\star\,$ Real-world analogy: Fluorescent tube. The electrode caps create a null at each end.
 - Monopole Antenna: Single pole radiating energy in a pattern akin to a sliced bagel.
 - $\star\,$ Real-world analogy: Light bulb. The base creates a null.

• Radiation Patterns:

 Energy is concentrated in specific directions, by taking it from other directions, creating **nulls** where little or no radiation occurs.

• Thermodynamics and Gain:

- Energy isn't "lost" in the nulls; it is **redirected** to focus more power in specific directions.
- This directional focus creates gain: Gain = power density compared to an isotropic radiator.
- Why It Matters: Higher gain antennas focus more energy in desired directions, improving efficiency and range.

Visualizing Dipoles and Monopoles

• Dipole Antenna:

- Radiation pattern resembles a **donut**.
- Real-world analogy: Fluorescent tube.

• Monopole Antenna:

- Radiation pattern resembles a sliced bagel.
- Real-world analogy: Light bulb.

Dipole: Donut Radiation Pattern

Monopole: Sliced Bagel Radiation

Decibels!

Understanding Antenna Front-to-Back Ratios

- What is the Front-to-Back Ratio (F/B)?
 - A measure of an antenna's ability to focus energy in the desired direction (front) while minimizing radiation in the opposite direction (back).
- Expressed as:

$$\mathsf{F}/\mathsf{B} \ \mathsf{Ratio} \ (\mathsf{dB}) = 10 \cdot \mathsf{log}_{10} \left(\frac{\mathsf{Power} \ (\mathsf{front})}{\mathsf{Power} \ (\mathsf{back})} \right)$$

• Typical Values:

- Omni-directional antennas: 0 dB (equal radiation in all directions).
- Yagi antennas: $10 20 \,\text{dB}$ (good rejection of rear signals).
- $\,\circ\,$ High-gain directional antennas: 30 + dB (excellent rejection).

• Why It Matters:

- Reduces interference from signals behind the antenna.
- Improves reception of weak signals in the desired direction.
- Essential for reducing noise and increasing signal-to-noise ratio (SNR).

Antenna Radiation Patterns

Vertical over real ground

146 MHz Gain 14.02 dB 0.0 dBmar 20

Admuth Plot Elevation Angle 2.0 deg Outer Ring 14.02 dB

 Sice Nax Gain
 14/02 dBi (g) Az Angle = 90.0 deg.

 ProntBack
 24.41 dB

 Beanwidt
 73.6 deg. :-0.05 (g) 52.5, 128.5 deg.

 Sidelback Gain
 -5.55 dBi (g) Az Angle = 225.0 deg.

 FrontBack
 19.7 dB

Azimuth Radiation Pattern

Elevation Radiation Pattern

・ロト ・回ト ・ヨト ・ヨト

æ

William A. Polhemus - NH6ET

Decibels!

Total Field

Other Types of Gain: Amplifiers and LNAs

• What is Gain?

- Gain increases the power or amplitude of a signal.
- $\circ~$ Measured in positive dB (e.g., $+10\,\text{dB}).$
- Common Types of Amplifiers:
 - Power Amplifiers (PAs):
 - $\star\,$ Boost the transmitted signal to a higher power level.
 - $\star~$ Example: 5 W \rightarrow 100 W = +13 dB.
 - Preamplifiers (Preamps):
 - $\star\,$ Boost weak signals before processing.
 - \star Example: Amplifying a faint RF signal for better reception.

• Low Noise Amplifiers (LNAs):

- $\star\,$ Amplify weak signals while adding minimal noise.
- $\star\,$ Critical for satellite and weak-signal communications.

• Why Gain Matters:

- Improves signal-to-noise ratio (SNR):
 - $\star\,$ Makes weak signals easier to detect and process.
- Enables communication over longer distances.
- Quick Tip:

Total Gain (dB) = $G_{PA} + G_{Preamp} - L_{Cable} - L_{Connectors}$

Understanding Losses in RF Systems

- What is Loss?
 - Loss occurs when power is **dissipated or absorbed** rather than transmitted.
 - Measured in **negative dB** (e.g., -3 dB).
- Common Types of Loss:
 - Cable Loss:
 - $\star\,$ Power dissipated as heat due to resistance in coaxial cables.
 - ★ Increases with the length of the cable and the frequency of the signal.
 - $\star~$ Example: 100 ft of no name RG-8X at 144 MHz: $-4.5\,dB$
 - **Connector Loss:** Each connector introduces a small loss (usually < -0.2 dB).
 - **Atmospheric Loss:** Absorption of RF energy by the atmosphere, more significant at higher frequencies.
 - **Filters:** Duplexers and other filters can ass significant loss (sometimes > 3 dB.)
 - **Obstruction Loss:** Loss due to objects (e.g., buildings, trees, a Puu) blocking the signal. This can include the curvature of the earth!

Decibels and Signal Strength

• What is Signal Strength?

 Signal strength is the power level of a received signal, typically measured in dBm.

• S-Meter Scale (Typical):

- S1 : Weak signal ($-121 \, \text{dBm}$).
- \circ S9 : Strong signal ($-73 \, \text{dBm}$).

• Rule of Thumb:

- \circ +6 dB: Corresponds to **1 S-unit increase**.
- **Example:** Going from S7 to S9 adds 12 dB of signal strength.

• Why It Matters:

- Helps quantify signal quality and communication effectiveness.
- Guides antenna rotation, helps assess the noise level at Gary's house.

S-Units vs. Decibels: A Historical Perspective

• S-Units: The Early Days

- Developed as a **qualitative system** for radio operators to describe signal strength.
- Pre-dates the formal adoption of decibels in radio communications, as a **quantitative system** of signal strength.
- Original S-meters provided **approximate** signal strength readings without standardization.

• The Hybrid System

- Decibels were incorporated into S-unit scales to **standardize** measurements.
- Modern S-meters use:
 - * S1 to S9: Approximately 6 dB per S-unit.
 - \star **Above S9:** Signal strength expressed directly in decibels (e.g., S9+10 dB).

Path Loss and Decibels

• Free Space Path Loss Formula:

$$L = 20 \cdot \log_{10}(d) + 20 \cdot \log_{10}(f) + 20 \cdot \log_{10}\left(\frac{4\pi}{c}\right)$$

- *d*: Distance (meters).
- f: Frequency (Hz).
- c: Speed of light $(3 \times 10^8 \text{ m/s})$.
- Key Insights:
 - Path loss increases with **distance** (d).
 - Path loss increases with **frequency** (f).

• Practical Implication:

- Higher frequencies and longer distances mean higher losses.
- Highlights the importance of high power, efficient antennas, and optimized frequencies.

• Quick Example:

• f = 2.4 GHz, d = 1 km:

 $L = 20 \cdot \log_{10}(1000) + 20 \cdot \log_{10}(2.4 \times 10^9) - 147.55$

• Approximate loss: 100.04 dB.

Maxwell's Equations and Path Loss

• Wave Propagation:

- Maxwell's equations govern how electromagnetic waves propagate:
 - Changing magnetic fields create electric fields (Faraday's Law).
 - Changing electric fields and currents create magnetic fields (Ampère's Law).

• Inverse Square Law:

- Radiated energy spreads spherically.
- Intensity decreases with distance: Power Density $\propto rac{1}{d^2}$

• Why It Matters:

- Path loss arises from these fundamental principles:
 - \star Greater distances = weaker signals.
 - \star Higher frequencies = more loss.
- Quick tip: Double the distance = four times the loss (-6dB).

Comparing Antenna and Cable Configurations

Dipole with 100' RG-58

- Transceiver Power: 100 W (50 dBm)
- Amplifier Gain: +10 dB
- Antenna Gain: 2.15 dBi
- Cable Loss: -5.5 dB
- EIRP: 56.65 dBm

Performance:

- Amplifier mitigates cable loss, but overall efficiency is limited.
- Poor cable reduces usable power for both transmit and receive.

Yagi with 50' LMR-400

- Transceiver Power: 100 W (50 dBm)
- Antenna Gain: 7.5 dBi
- Cable Loss: -0.75 dB
- EIRP: 56.75 dBm

Performance:

- Yagi's gain improves both transmit range and received signal clarity.
- Lower cable loss ensures efficient power use and better SNR on reception.

Putting It All Together: A Path Budget

- What is a Path Budget?
 - Combines gains and losses from transmitter to receiver.

• Key Formula:

Received Power (dBm) = Transmitter Power (dBm)+Gains (dB)-Lo

• Example:

- Transmitter Power: 5 W (37 dBm).
- **Amplifier Gain:** +10 dB.
- Cable Loss (Tx Side): -5.5 dB.
- Free Space Path Loss (100 km at 144 MHz): -115.61 dB.
- Cable Loss (Rx Side): $-0.75 \, dB$.
- Antenna Gain (Rx): +7 dBi.

Path Budget: Calculation and Outcome

• Path Budget Calculation:

Received Power (dBm) = 37+10-5.5+2.15-115.61-0.75+7

Received Power $= -65.71 \, dBm$

- Outcome:
 - The received signal (-65.71 dBm) is well above typical **2-meter receiver sensitivity** (-120 dBm).

• Fade Margin:

- What is it?
 - ★ Additional signal strength above the receiver's sensitivity needed to account for signal fading due to environmental factors.
 - Typical fade margin values range from 10 dB (clear line of sight) to 20 dB (urban or obstructed paths).
- This Example:
 - ★ Received power (-65.71 dBm) provides a fade margin of approximately 54.29 dB.

Path Budget Example: Radio Mobile

Mauna Loa to NH6ET			
Old Mauna Loa Tower (1)			(2) NH6ET QTH
Latitude	19.585412 °	Latitude	19.543596 °
Longitude	-155.450067 °	Longitude	-154.872111 °
Ground elevation	2491.2 m	Ground elevation	37.0 m
Antenna height	8.0 m	Antenna height	8.0 m
Azimuth	94.29 TN 84.53 MG °	Azimuth	274.49 TN 264.70 MG °
Tilt	-2.59 °	Tilt	2.04 °
Radio system			Propagation
TX power	28.00 dBm	Free space loss	143.46 dB
TX line loss	0.30 dB	Obstruction loss	0.67 dB
TX antenna gain	25.00 dBi	Forest loss	0.00 dB
RX antenna gain	25.00 dBi	Urban loss	1.00 dB
RX line loss	0.60 dB	Statistical loss	19.44 dB
RX sensitivity	-90.00 dBm	Total path loss	164.57 dB
Performance			
Distance		60.734 km	
Precision		30.4 m	
Frequency			5875.000 MHz
Equivalent Isotropically Radiate	ed Power		186.221 W
System gain			167.10 dB
Required reliability			94.000 %
Received Signal			-87.47 dBm
Received Signal			9.47 μV
Fade Margin			2.53 dB

ET's Easy Mode for Decibel Math

• Step 1: Start with the Sign

- \circ +: Move the decimal point to the **right**.
- $\circ~-:$ Move the decimal point to the left.

• Step 2: Read the Tens

• Each 10 tells you how many places to move the decimal point.

• Step 3: Handle the Ones

- Each $+3 \, dB$: Double the value.
- Each $-3 \, dB$: Halve the value.
- Each remaining +1 dB: Add 20
- \circ Each remaining $-1 \, dB$: Subtract 20

• Why It Works:

• It's simple, quick, and close enough for RF work!

Calculating Power in Watts: 27 dBm

• Step 1: Recall the Formula

$$P_{\mathsf{watts}} = 10^{rac{P_{\mathsf{dBm}}-30}{10}}$$

• Step 2: Plug in 27 dBm

$$P_{
m watts} = 10^{rac{27-30}{10}}$$

• Step 3: Simplify the Exponent

$$P_{\rm watts} = 10^{\frac{-3}{10}} = 10^{-0.3}$$

• Step 4: Approximate the Value

 $P_{\rm watts} pprox 0.501 \, {
m W}$

• Result:

- $\circ ~27\,d\text{Bm}\approx 0.501\,\text{W}$
- Half a watt is a common power level for low-power transmitters!

Calculating Power in Watts: 27 dBm (ET's Easy Mode)

- Start with the sign: + means we're moving the decimal point to the **right**.
- Break it down:
 - Start with 1mw because it's dBm, or dB relative to one milliwatt
 - $\circ~20\,dBm=0.1\,W$ (move the decimal two places to the right).
 - $\circ~$ Add +3 dB: Double it $\rightarrow 0.2\,W.$
 - $\circ~$ Add another $+3\,dB:~$ Double it again $\rightarrow~0.4\,W.$
 - $\circ~$ Add the final $+1\,dB:~$ Add $20\% \rightarrow 0.4 + 0.08 = 0.48\,W.$
- Result: $27 \, \text{dBm} \approx 0.48 \, \text{W}$
- Close enough for RF work!